

SWEN-261
Introduction to Software
Engineering

Department of Software Engineering
Rochester Institute of Technology

Object-Oriented Design II

Controller

Pure fabrication

Open/close

Polymorphism

Liskov substitution

The lesson continues building your object-oriented
design skills with several other design principles.

 These are also principles from SOLID and GRASP

2

Controller specifies a separation of concerns
between the UI tier and other system tiers.

 "Controller" is an overused term in software design.
• In GRASP, this is not the view "controller" which is

firmly in the UI tier.

 In simple systems, it may be a single object that

coordinates all system operations.

 In more complex systems, it is often multiple

objects from different classes each of which

handles a small set of closely related operations.

3

Assign responsibility to receive and coordinate a

system operation to a class outside of the UI tier.

Here is how GRASP controllers fit into the software
architecture.

4

UI Tier Appl Tier

Model

Tier

S
o
m

e
 A

p
p
l

T
ie

r
c
la

s
s

S
o
m

e
 M

o
d
e
l

 T
ie

r
c
la

s
s

Appl Tier

Model

Tier

V
ie

w
 c

o
n

tr
o

lle
rs

 w
o

rk

th
ro

u
g
h
 t

h
e
s
e
 c

la
s
s
e
s

Simple System More Complex System
UI Tier

V
ie

w
 c

o
n
tr

o
lle

rs
 w

o
rk

th
ro

u
g
h
 t

h
e
s
e
 c

la
s
s
e
s

Operation Subsystem

Operation

Op1

Op2

Op3

Where in the sample

webapp is there a

GRASP-style controller?

Pure Fabrication is sometimes needed to balance
other design principles.

 Your design should be primarily driven by the

problem domain.

 To maintain a cohesive design you may need to

create classes that are not domain entities.

 In the previous slide, the Operation Subsystem

was a pure fabrication.

5

Assign a cohesive set of responsibilities to a non-domain

entity in order to support high cohesion and low coupling.

What were pure fabrications in the

sample webapp? How could you

have implemented it without those

fabrications?

The Open/closed principle deals with extending and
protecting functionality.

 Software functionality should be extendable

without modifying the base functionality.
• Mostly provided by features of implementation

language: inheritance, interface

 Your design should consider appropriate use of
• Inheritance from abstract classes

• Implementation of interfaces

 Dependency injection provides a mechanism for

extending functionality without modification.

6

Software entities should be open for

extension, but closed for modification.

Polymorphism creates a hierarchy when related
behavior varies by class.

 Polymorphism is a primary object-oriented concept

and should be used whenever possible

 Bad code smells that indicate a potential class

hierarchy and use of polymorphism
• Conditional that selects behavior

based on a "type" attribute
• Use of instanceof or similar

language constructs to select

operations to perform

7

Assign responsibility for related behavior that

varies by class by using polymorphic behavior.

The Liskov substitution principle constrains the
pre- and post-conditions of operations.

 Pre-conditions specify what must be true before a

method call.

 Post-conditions specify what will be true after a

method call.

 Design by Contract is a programming technique

that requires formal definition of the pre- and post-

conditions and has language support for it.

8

Objects in a program should be replaceable with

instances of their subtypes without altering the

correctness of that program

Any subclass of a class should be able to
substitute for the superclass without error.

 A subclass must not violate any of the pre- or

post-conditions guaranteed by the superclass.

 Superclass clients count on the pre- and post-

conditions being true even when polymorphism

has the client interacting with a subclass.

 To maintain a pre-condition, a subclass must not

narrow the pre-condition, i.e. be a subset.

 To maintain a post-condition, a subclass must not

broaden the post-condition, i.e. be a superset.

9

Here is what Liskov substitution allows.

10

mathOp() must accept a param of 1 through 10.

It could accept a wider range, i.e. 1 to 15.

mathOp() can not quadruple the value of the

parameter because that would lead to a broader

post-condition, i.e. return value between 4 and 40.

mathOp() could have a narrower post-condition of

3 to 17, i.e. it is a PlusTwo class for its full range

of input.

If client reference is to:

DoMath

Doubler

