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The lesson continues building your object-oriented
design skills with several other design principles.

» These are also principles from SOLID and GRASP

SOLID GRASP
= Single Responsibility = Controller |

» Open/closed = Creator
= Liskov substitution * |[ndirection

» Interface segregation = |nformation expert

* Dependency inversion = High cohesion

= |_ow coupling

= Polymorphism |

» Protected variations

= Pure fabrication ‘ @
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Controller specifies a separation of concerns
between the Ul tier and other system tiers.

Assign responsibility to receive and coordinate a
system operation to a class outside of the Ul tier.

= "Controller" is an overused term in software design.
* In GRASP, this is not the view "controller” which is
firmly in the Ul tier.

" In simple systems, it may be a single object that
coordinates all system operations.

* [In more complex systems, it is often multiple
objects from different classes each of which
handles a small set of closely related operations.



Here 1s how GRASP controllers fit into the software
architecture.
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Pure Fabrication is sometimes needed to balance
other design principles.

Assign a cohesive set of responsibilities to a non-domain
entity in order to support high cohesion and low coupling.

= Your design should be primarily driven by the
problem domain.

* To maintain a cohesive design you may need to
create classes that are not domain entities.

" In the previous slide, the Operation Subsystem
was a pure fabrication.

What were pure fabrications in the
sample webapp? How could you
have implemented it without those
fabrications?




The Open/closed principle deals with extending and
protecting functionality.

Software entities should be open for
extension, but closed for modification.

» Software functionality should be extendable

without modifying the base functionality.
* Mostly provided by features of implementation
language: inheritance, interface

* Your design should consider appropriate use of
* Inheritance from abstract classes
* Implementation of interfaces

* Dependency injection provides a mechanism for
extending functionality without modification.



Polymorphism creates a hierarchy when related
behavior varies by class.

Assign responsibility for related behavior that
varies by class by using polymorphic behavior.

* Polymorphism is a primary object-oriented concept
and should be used whenever possible

» Bad code smells that indicate a potential class

hierarchy and use of polymorphism

« Conditional that selects behavior
based on a "type" attribute

 Use of instanceof or similar
language constructs to select
operations to perform




The Liskov substitution principle constrains the
pre- and post-conditions of operations.

Objects in a program should be replaceable with
Instances of their subtypes without altering the
correctness of that program

* Pre-conditions specify what must be true before a
method call.

» Post-conditions specify what will be true after a
method call.

» Design by Contract is a programming technique
that requires formal definition of the pre- and post-
conditions and has language support for it.




Any subclass of a class should be able to
substitute for the superclass without error.

» A subclass must not violate any of the pre- or
post-conditions guaranteed by the superclass.

» Superclass clients count on the pre- and post-
conditions being true even when polymorphism
has the client interacting with a subclass.

* To maintain a pre-condition, a subclass must not
narrow the pre-condition, i.e. be a subset.

* To maintain a post-condition, a subclass must not
broaden the post-condition, i.e. be a superset.




Here is what Liskov substitution allows.

DoMath mathOp() [
Precondition: param can be between 1 and 10. mathOp() will not fail with
+mathOp(in param : int) : int input in that range.
AN

Postcondition: return value is guaranteed to be between 0 and 30. The client
will fail if it is outside of that range.

Doubler mathOp() must accept a param of 1 through 10.

+mathOp(in param : int) : int It could accept a wider range, i.e. 1 to 15.

mathOp() can not quadruple the value of the
parameter because that would lead to a broader
post-condition, i.e. return value between 4 and 40.

If client reference is to:

mathOp() could have a narrower post-condition of
3to 17, i.e.itis a PlusTwo class for its full range
of input.
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