Object-Oriented Design Il

Controller
SWEN-261 o
Introduction to Software Pure fabrication
Engineering Open/close

Department of Software Engineering
Rochester Institute of Technology

Polymorphism

Liskov substitution @

Rochester Institute



The lesson continues building your object-oriented
design skills with several other design principles.

» These are also principles from SOLID and GRASP

SOLID GRASP
= Single Responsibility = Controller |

» Open/closed = Creator
= Liskov substitution * |[ndirection

» Interface segregation = |nformation expert

* Dependency inversion = High cohesion

= |_ow coupling

= Polymorphism |

» Protected variations

= Pure fabrication ‘ @

Rochester Institute




Controller specifies a separation of concerns
between the Ul tier and other system tiers.

Assign responsibility to receive and coordinate a
system operation to a class outside of the Ul tier.

= "Controller" is an overused term in software design.
* In GRASP, this is not the view "controller” which is
firmly in the Ul tier.

" In simple systems, it may be a single object that
coordinates all system operations.

* [In more complex systems, it is often multiple
objects from different classes each of which
handles a small set of closely related operations.



Here 1s how GRASP controllers fit into the software
architecture.

Simple System

View controllers work
through these classes

Ul Tier

More Complex System

Appl Tier

Some Appl

Tier class

Model
Tier

Some Model

Tier class

Ul Tier

Appl Tier

Model
Operation Subsystem Tier

Operation
JAY

v

View controllers work
through these classes

[ [
Opl Op3

Op2

Where in the sample

webapp is there a t@

GRASP-style controller?

Software Engineering

Rochester Institute
of Technology



Pure Fabrication is sometimes needed to balance
other design principles.

Assign a cohesive set of responsibilities to a non-domain
entity in order to support high cohesion and low coupling.

= Your design should be primarily driven by the
problem domain.

* To maintain a cohesive design you may need to
create classes that are not domain entities.

" In the previous slide, the Operation Subsystem
was a pure fabrication.

What were pure fabrications in the
sample webapp? How could you
have implemented it without those
fabrications?




The Open/closed principle deals with extending and
protecting functionality.

Software entities should be open for
extension, but closed for modification.

» Software functionality should be extendable

without modifying the base functionality.
* Mostly provided by features of implementation
language: inheritance, interface

* Your design should consider appropriate use of
* Inheritance from abstract classes
* Implementation of interfaces

* Dependency injection provides a mechanism for
extending functionality without modification.



Polymorphism creates a hierarchy when related
behavior varies by class.

Assign responsibility for related behavior that
varies by class by using polymorphic behavior.

* Polymorphism is a primary object-oriented concept
and should be used whenever possible

» Bad code smells that indicate a potential class

hierarchy and use of polymorphism

« Conditional that selects behavior
based on a "type" attribute

 Use of instanceof or similar
language constructs to select
operations to perform




The Liskov substitution principle constrains the
pre- and post-conditions of operations.

Objects in a program should be replaceable with
Instances of their subtypes without altering the
correctness of that program

* Pre-conditions specify what must be true before a
method call.

» Post-conditions specify what will be true after a
method call.

» Design by Contract is a programming technique
that requires formal definition of the pre- and post-
conditions and has language support for it.




Any subclass of a class should be able to
substitute for the superclass without error.

» A subclass must not violate any of the pre- or
post-conditions guaranteed by the superclass.

» Superclass clients count on the pre- and post-
conditions being true even when polymorphism
has the client interacting with a subclass.

* To maintain a pre-condition, a subclass must not
narrow the pre-condition, i.e. be a subset.

* To maintain a post-condition, a subclass must not
broaden the post-condition, i.e. be a superset.




Here is what Liskov substitution allows.

DoMath mathOp() [
Precondition: param can be between 1 and 10. mathOp() will not fail with
+mathOp(in param : int) : int input in that range.
AN

Postcondition: return value is guaranteed to be between 0 and 30. The client
will fail if it is outside of that range.

Doubler mathOp() must accept a param of 1 through 10.

+mathOp(in param : int) : int It could accept a wider range, i.e. 1 to 15.

mathOp() can not quadruple the value of the
parameter because that would lead to a broader
post-condition, i.e. return value between 4 and 40.

If client reference is to:

mathOp() could have a narrower post-condition of
3to 17, i.e.itis a PlusTwo class for its full range
of input.

S

Software Engineering

10 Rochester Institute
of Technology



